西螺地區塑膠防雨簡易設施蔬菜栽培氮磷肥減量之研究
林譽卿、黃山內

摘要
林譽卿、黃山內　2001．西螺地區塑膠防雨簡易設施蔬菜栽培氮磷肥減量之研究。台南區農業改良場研究彙報 38：54～68。
本省因年雨量分佈不均，熱帶氣旋又常帶來豪雨，在經濟利益的考量下，塑膠設施蔬菜田之興起。然以塑膠布覆蓋之設施溫室栽培蔬菜，因連年施肥又缺乏雨水淋洗，往往由於減肥長期積累，造成蔬果生育阻礙，形成經濟上的浪費及環境的惡化。本試於86年在西螺地區選取一處表土含高鹽分（EC＞3 ds m⁻¹）、高含酸態氮（＞40 mg kg⁻¹）、高含量性磷肥（＞1000 mg kg⁻¹）之十年塑膠防雨簡易設施蔬菜田，進行氮、磷肥減量施用對短期蔬菜類生產之產量及土壌品質的影響研究。由2001年施肥試驗調查結果發現，每作施用台肥2號有機質肥料600 kg ha⁻¹，且每年施用豆粕300 kg ha⁻¹兩次，但不施用氮、磷化學肥料的情況下，試驗統計分析結果顯示，並不會造成蔬菜及蔓莧的減產。而建議於塑膠防雨溫室生產短期蔬菜類上，土壤中若有養分濃度高者，每作施用有機質的情況下，該可以不用施用肥料。
關鍵詞：設施栽培，連作障礙，土壤肥力，磷酸態氮。
接受日期：2001年10月2日。

前言
台灣地區因年雨量分佈不均，熱帶氣旋又常帶來豪雨，在經濟利益的考量下，塑膠設施蔬菜田之興起，目前雲嘉南地區塑膠設施栽培短期蔬菜類蔬菜以西螺、溪口、新港等鄉鎮為主，而現今仍可維持正常運作之連作田，又以西螺地區設置較久。以塑膠布覆蓋設施栽培蔬菜，因連年施肥又缺乏雨水淋洗，往往由於減肥長期積累，造成土壤養分組成不均衡，進而造成蔬菜生育阻礙(4)，結果不是原地廢耕就是重新客土或洗塗，形成經濟上的浪費及農業生產環境的惡化。實驗過量施肥的害處，一時不易查覺，而溫室又較長期之土壌容易引起氮、磷及鹽基之積累，造成蔬菜生育阻礙(9)。施用高含量氮、磷肥，對作物生育、產量及營養要素的影響，過去已有研究(12,17,20)。如國的缺乏會造成大豆蛋質及種子減產而影響產量(13)。Csizinszky 以 winged bean 進行三要素施用量實驗，發現增加氮的施用量，造成中氮濃度的濃度增加，磷、鈣、鉀、銅、鐵、鎳、銅、鋅濃度降低；增加磷肥的施用量，造成磷、鉀、鎳、鋅濃度增加(14)。在化學氮肥大量施用下，蔬菜中之硝酸根與亞硝酸根含量可能累積到足以傷害到人體健康之程度(19)。因此設施內施用氮、磷肥料要適量，是否會造成土壤中氮、磷大量積累，及造成作物可食部份之硝酸根含量過高，也是值得探討的課題。目前設施蔬菜栽培工作並無一
材料與方法

一、試驗地點：西南地區一處設置十年以上蜜藤防護溫室（試驗前土壤性質見表1）。

二、供試作物：芹菜、蘿蔔輪作（耕作次序見表2）。

三、試驗設計：由於上一年度蜜藤防護溫室蔬菜園進行施肥調查，發現目前蜜藤地區農民普遍施肥量為每作有機肥料 1-4 ton ha⁻¹及氮、磷、石灰化分別為70-180，70-180 kg ha⁻¹外，冬季施豆粕，因此本試驗設計施肥量為每作施用含肥2號有機肥料（N-P₂O₅-K₂O = 4-4-4）600 kg ha⁻¹，冬季再施豆粕（含N-P₂O₅-K₂O = 6-5-1-6-2.5 %）300 kg ha⁻¹外，將農民慣用三要素（N-P₂O₅-K₂O = 112-70-112 kg ha⁻¹）之氮及磷化肥施用量當作1，鉀化化肥全量施用。設七處理分別為：

A、氮肥1，磷肥1（N1P1）
B、氮肥2/3，磷肥1（N2P1/3）
C、氮肥1/3，磷肥1（N1P1/3）
D、氮肥1，磷肥0（N1P0）
E、氮肥2/3，磷肥0（N2P0）
F、氮肥1/3，磷肥0（N1P0/3）
G、氮肥0，磷肥0（N0P0）

採遠機完全篩集設計，每處理四重複，小區面積 10 m²。

四、實施步驟：在某一設施行短期蜜藤類週年生產，每一作基礎施用有機肥料全量及化學肥料氮（尿素）50%，鉀肥（氯化鉀）100%，磷肥（過磷酸鈣）100%，剩下50%氮（尿素），於本期施出期施用。

於每週抽查蜜藤種株高、重量，並分析植株之鉀態氮，硝態氮、全氮、磷、鉀、鈣、鎂及鐵、锰、銅、鋅，於每週採0-20 cm 表土，分析 pH、EC（電導度）液、有機質、總碳、鉀態氮（NH₄⁺N）、總磷，有效性磷（Bray No.1）、交換性鉀、鈣、鎂（Mehlich’s method）及表土磷抽出液之 NO₃⁻，Cl⁻，SO₄²⁻，Na⁺，K⁺，Ca²⁺，Mg²⁺，並於每半年採不同深度之土樣（A）0-20 cm （B）21-40 cm （C）41-60 cm （D）61-90 cm （E）91-120 cm，分析 pH、EC（1:5）（8），鉀態氮、硝態氮，化學性氮，有效磷化鎂，

五、分析方法（參考 Methods of Soil Analysis, 1982）

(1) 水分含量：在100±3℃烘箱乾燥至恆重，測之。

(2) pH 值：土壤比水1:1（w/v）處理，去除有機質後，採用吸管法（pipet method）測定，並依美國農業部之質地三角形以命名。

(3) 比電導度（EC）：取土壤濁和抽出液或土水比1:5（w/v），以電導度計測之。

(4) 有機質含量：採用 Walkley-Black 溶解氧化法測定。

(5) 全磷：土壤採用水解－硫代硫酸鈉修正之 Kjeldahl 法測之，植體以硫酸分解後測之。

(6) 土壤之鉀態氮及硝態氮：鮮鮮土壤以 1:10 之 2M KCl 抽取，將土壤抽出液加 MgO 蒸餾滴定定量之，即為鉀態氮。殘餘液再加 MgO 及 Devarda alloy 蒸餾滴定定量之，即為硝態氮，兩者並校正水分含量。
表 1. 試驗前之土壤性質
Table 1. The physical and chemical properties of soil

<table>
<thead>
<tr>
<th>Items</th>
<th>0-20</th>
<th>21-40</th>
<th>41-60</th>
<th>61-90</th>
<th>91-120</th>
<th>121-150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td>L</td>
<td>SL</td>
<td>L</td>
<td>L</td>
<td>SICL</td>
<td>SIC</td>
</tr>
<tr>
<td>pH</td>
<td>5.9</td>
<td>6.3</td>
<td>6.4</td>
<td>6.5</td>
<td>6.4</td>
<td>7.0</td>
</tr>
<tr>
<td>EC, dS m⁻¹</td>
<td>3.09</td>
<td>2.14</td>
<td>1.93</td>
<td>2.09</td>
<td>1.72</td>
<td>1.80</td>
</tr>
<tr>
<td>Organic matter, %</td>
<td>2.92</td>
<td>2.12</td>
<td>2.21</td>
<td>2.35</td>
<td>2.34</td>
<td>1.96</td>
</tr>
<tr>
<td>NH₄-N, mg kg⁻¹</td>
<td>36.3</td>
<td>37.8</td>
<td>37.7</td>
<td>39.7</td>
<td>40.8</td>
<td>31.7</td>
</tr>
<tr>
<td>NO₃-N, mg kg⁻¹</td>
<td>56.6</td>
<td>55.9</td>
<td>61.1</td>
<td>65.4</td>
<td>68.9</td>
<td>67.6</td>
</tr>
<tr>
<td>Available P₂O₅, mg kg⁻¹</td>
<td>1358</td>
<td>691</td>
<td>337</td>
<td>235</td>
<td>105</td>
<td>25</td>
</tr>
<tr>
<td>Exchangeable K²O, mg kg⁻¹</td>
<td>153</td>
<td>105</td>
<td>110</td>
<td>122</td>
<td>187</td>
<td>104</td>
</tr>
<tr>
<td>Exchangeable CaO, mg kg⁻¹</td>
<td>4590</td>
<td>2530</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exchangeable MgO, mg kg⁻¹</td>
<td>1010</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
一、不同氮磷肥處理對蔬菜產量及品質的影響

本實驗於86年9月開始進行至89年11月結束，共計35作，本試驗區於每次採收前4-5天進行灌水一次，使土壤水分張力降到約10 kPa為止，植物採樣調查18作，採樣時間在上午9-10時進行。將18作之株高及產量進行統計分析，於各處理間均無顯著差異（P>0.05）。表3列出數種蔬菜不同處理間的產量差異，在18作中D處理（N1P0）有4作之產量指數低於G處理（N0P0）外，餘各處理均高於6-7之產量指數均高於G處理（N0P0），而於89年4月以後各處理之產量指數均高於G處理（N0P0），推斷此時G處理可能開始出現缺肥效應。表4列出數種蔬菜不同處理植株成分分析的結果，由表4知試驗頭兩年植株中速態氮、硝態氮含量相當高，於氮肥分別在200-600 mg kg⁻¹ 0.7-1.2%，而蔬菜植株的硝態氮含量較氮肥為低，約在0.3-0.5%。在試驗第三年，植株中速態氮及硝態氮濃度才顯示有降低的趨勢，分別維持在 < 400 mg kg⁻¹及 0.3-0.7%之間，將處理間各營養成分作統計分析的結果，由於區間變異係數大，於18作中只有86年12月B(N2/3P)、C(N1/3P)、D(N1P0)、E(N2/3P)、F(N1/3P)等五處理之間速態氮含量顯著高於A(N1P1)處理，A、B、C、D、E、F處理之硝態氮含量顯著高於G(N0P0)處理，及A、B、C、D、E處理之總氮量高於G處理。此外87年5月A處理蔬菜植體之速態氮含量顯著高於B、C、E、F、G處理，89年8月A、B處理蔬菜植體之速態氮含量高於G處理。雖然在塑膜設施內栽培，短期蔬菜類植株內速態氮濃度和氣候（乾燥、雨季）仍然有極大的相關，在雨季各處理植株之速態氮濃度均顯著降低。可能因雨水造成土壤中速態氮氣易於流失或缺氧環境增加速態氮作用。另外，87年7月及88年2月兩次採樣G處理植體之鎂含量顯著偏低。雖然表列所列植體營養成分有部分顯示差異，然於整體趨勢並不明顯，故並不認為具有代表性意義。

表3. 不同氮磷肥處理對蔬菜產量之影響

<table>
<thead>
<tr>
<th>採樣月份</th>
<th>植株高</th>
<th>產量</th>
<th>產量指數</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Height (cm)</td>
<td>Yield (g/m²)</td>
<td>Yield Index (%)</td>
</tr>
<tr>
<td>1997.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1P1</td>
<td>35.0±2.6</td>
<td>3297±397</td>
<td>104</td>
</tr>
<tr>
<td>N2/3P1</td>
<td>34.4±2.5</td>
<td>3084±256</td>
<td>97</td>
</tr>
<tr>
<td>N1/3P1</td>
<td>35.4±1.8</td>
<td>3153±254</td>
<td>99</td>
</tr>
<tr>
<td>N1P0</td>
<td>35.5±1.5</td>
<td>3137±432</td>
<td>99</td>
</tr>
<tr>
<td>N2/3P0</td>
<td>35.2±1.2</td>
<td>3149±243</td>
<td>99</td>
</tr>
<tr>
<td>N1/3P0</td>
<td>35.8±1.4</td>
<td>2926±174</td>
<td>92</td>
</tr>
<tr>
<td>N0P0</td>
<td>35.0±1.6</td>
<td>3179±251</td>
<td>100</td>
</tr>
<tr>
<td>1998.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1P1</td>
<td>29.3±1.4</td>
<td>1877±277</td>
<td>97</td>
</tr>
<tr>
<td>N2/3P1</td>
<td>30.4±1.1</td>
<td>1901±257</td>
<td>98</td>
</tr>
<tr>
<td>N1/3P1</td>
<td>30.1±0.9</td>
<td>2040±117</td>
<td>105</td>
</tr>
<tr>
<td>N1P0</td>
<td>28.4±1.7</td>
<td>1885±310</td>
<td>97</td>
</tr>
<tr>
<td>N2/3P0</td>
<td>29.3±1.3</td>
<td>2076±413</td>
<td>107</td>
</tr>
<tr>
<td>N1/3P0</td>
<td>30.4±1.4</td>
<td>1997±258</td>
<td>103</td>
</tr>
<tr>
<td>N0P0</td>
<td>28.6±0.6</td>
<td>1939±52</td>
<td>100</td>
</tr>
<tr>
<td>採樣月份</td>
<td>Treatments</td>
<td>株高 (Height, cm)</td>
<td>產量 (Yield, g m⁻²)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height (cm)</td>
<td>Yield (g m⁻²)</td>
</tr>
<tr>
<td>1998.11</td>
<td>N1P1*</td>
<td>24.2 ± 3.6</td>
<td>2418 ± 260</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>25.2 ± 2.0</td>
<td>2445 ± 82</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>26.6 ± 1.2</td>
<td>2528 ± 209</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>24.3 ± 3.0</td>
<td>2512 ± 440</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>25.1 ± 2.1</td>
<td>2441 ± 363</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>24.0 ± 1.8</td>
<td>2407 ± 245</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>24.7 ± 1.7</td>
<td>2362 ± 231</td>
</tr>
<tr>
<td>1999.05</td>
<td>N1P1</td>
<td>27.5 ± 4.0</td>
<td>2675 ± 303</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>26.8 ± 1.0</td>
<td>2593 ± 202</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>26.1 ± 1.3</td>
<td>2311 ± 116</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>27.3 ± 1.6</td>
<td>2610 ± 211</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>25.9 ± 2.2</td>
<td>2406 ± 272</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>27.2 ± 2.4</td>
<td>2674 ± 349</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>25.0 ± 4.0</td>
<td>2409 ± 361</td>
</tr>
<tr>
<td>1999.11</td>
<td>N1P1</td>
<td>25.9 ± 4.3</td>
<td>2510 ± 561</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>26.6 ± 4.2</td>
<td>2665 ± 131</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>28.1 ± 1.4</td>
<td>2838 ± 289</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>27.2 ± 2.1</td>
<td>2646 ± 171</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>27.5 ± 1.2</td>
<td>2825 ± 306</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>28.7 ± 1.9</td>
<td>2801 ± 201</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>26.6 ± 3.8</td>
<td>2628 ± 439</td>
</tr>
<tr>
<td>2000.05</td>
<td>N1P1</td>
<td>30.4 ± 3.1</td>
<td>2131 ± 237</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>31.7 ± 2.1</td>
<td>2278 ± 540</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>31.4 ± 1.1</td>
<td>2198 ± 246</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>30.5 ± 3.4</td>
<td>2079 ± 127</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>30.4 ± 2.6</td>
<td>2173 ± 458</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>30.4 ± 2.6</td>
<td>2132 ± 340</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>30.8 ± 2.5</td>
<td>2082 ± 173</td>
</tr>
<tr>
<td>2000.11</td>
<td>N1P1</td>
<td>32.3 ± 4.9</td>
<td>2336 ± 137</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>31.6 ± 2.8</td>
<td>2095 ± 263</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>32.7 ± 1.5</td>
<td>2217 ± 22</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>31.1 ± 3.3</td>
<td>2081 ± 358</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>32.7 ± 0.9</td>
<td>2310 ± 75</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>32.2 ± 2.7</td>
<td>2098 ± 146</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>32.8 ± 2.5</td>
<td>2073 ± 188</td>
</tr>
</tbody>
</table>

* N1P1 means N-P₂O₅ is used by 112-70 kg ha⁻¹
N2/3P1 means N-P₂O₅ is used by 112×2/3-70×1 kg ha⁻¹

The rest can be done in the same manner.
<table>
<thead>
<tr>
<th>Month</th>
<th>Treatment</th>
<th>N_H4-N</th>
<th>N_NO_2-N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Zn</th>
<th>Cu</th>
<th>Fe</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997.10</td>
<td>N1P1</td>
<td>51.5±172</td>
<td>99.2±2074</td>
<td>40.1±1.5</td>
<td>7.97±0.5</td>
<td>95.4±3.3</td>
<td>15.1±1.0</td>
<td>12.8±2.5</td>
<td>119</td>
<td>16</td>
<td>366</td>
</tr>
<tr>
<td>N2/3P1</td>
<td>618±18</td>
<td>9355±1613</td>
<td>39.7±1.5</td>
<td>8.26±0.8</td>
<td>100.1±6.2</td>
<td>15.4±2.0</td>
<td>13.2±2.4</td>
<td>133</td>
<td>16</td>
<td>334</td>
<td>44</td>
</tr>
<tr>
<td>N1/3P1</td>
<td>569±60</td>
<td>7536±738</td>
<td>37.3±2.3</td>
<td>8.32±0.7</td>
<td>104.0±4.5</td>
<td>20.5±8.0</td>
<td>10.3±4.0</td>
<td>128</td>
<td>17</td>
<td>347</td>
<td>46</td>
</tr>
<tr>
<td>N1P0</td>
<td>602±72</td>
<td>9939±1480</td>
<td>37.7±3.3</td>
<td>8.20±0.6</td>
<td>93.8±8.4</td>
<td>13.7±3.3</td>
<td>10.8±3.8</td>
<td>118</td>
<td>18</td>
<td>458</td>
<td>61</td>
</tr>
<tr>
<td>N2/3P0</td>
<td>535±133</td>
<td>8882±529</td>
<td>38.4±1.7</td>
<td>8.52±0.4</td>
<td>103.6±7.0</td>
<td>16.3±6.0</td>
<td>11.6±3.2</td>
<td>122</td>
<td>17</td>
<td>400</td>
<td>47</td>
</tr>
<tr>
<td>N1/3P0</td>
<td>442±82</td>
<td>8060±1601</td>
<td>38.9±2.3</td>
<td>8.07±0.3</td>
<td>100.4±8.2</td>
<td>13.4±3.1</td>
<td>11.2±3.3</td>
<td>113</td>
<td>17</td>
<td>388</td>
<td>46</td>
</tr>
<tr>
<td>N0P0</td>
<td>661±131</td>
<td>7192±2086</td>
<td>37.2±1.6</td>
<td>7.81±0.4</td>
<td>104.7±8.3</td>
<td>14.2±3.1</td>
<td>11.9±1.1</td>
<td>113</td>
<td>17</td>
<td>402</td>
<td>40</td>
</tr>
<tr>
<td>1998.5</td>
<td>N1P1</td>
<td>420±27</td>
<td>12452±178</td>
<td>36.7±1.4</td>
<td>9.15±0.4</td>
<td>112.6±1.8</td>
<td>23.7±3.1</td>
<td>15.3±0.5</td>
<td>124</td>
<td>30</td>
<td>1145</td>
</tr>
<tr>
<td>N2/3P1</td>
<td>443±19</td>
<td>10775±558</td>
<td>36.5±1.0</td>
<td>9.05±0.4</td>
<td>125.8±0.9</td>
<td>22.9±3.9</td>
<td>16.1±2.6</td>
<td>103</td>
<td>22</td>
<td>1459</td>
<td>65</td>
</tr>
<tr>
<td>N1/3P1</td>
<td>451±26</td>
<td>11032±644</td>
<td>36.4±1.4</td>
<td>8.90±0.5</td>
<td>128.1±8.9</td>
<td>23.3±1.6</td>
<td>14.8±0.9</td>
<td>116</td>
<td>30</td>
<td>1398</td>
<td>65</td>
</tr>
<tr>
<td>N1P0</td>
<td>476±30</td>
<td>11598±895</td>
<td>36.8±2.9</td>
<td>8.80±0.3</td>
<td>117.1±9.9</td>
<td>22.7±2.0</td>
<td>15.0±0.8</td>
<td>98</td>
<td>31</td>
<td>1110</td>
<td>68</td>
</tr>
<tr>
<td>N2/3P0</td>
<td>539±42</td>
<td>11309±1348</td>
<td>37.8±1.9</td>
<td>8.78±0.5</td>
<td>130.5±6.4</td>
<td>24.9±3.7</td>
<td>14.7±0.9</td>
<td>81</td>
<td>23</td>
<td>1022</td>
<td>58</td>
</tr>
<tr>
<td>N1/3P0</td>
<td>445±29</td>
<td>10772±305</td>
<td>36.4±2.9</td>
<td>8.47±0.3</td>
<td>126.5±14.5</td>
<td>25.7±1.7</td>
<td>15.0±1.5</td>
<td>96</td>
<td>19</td>
<td>1190</td>
<td>55</td>
</tr>
<tr>
<td>N0P0</td>
<td>431±19</td>
<td>10960±1119</td>
<td>37.8±3.1</td>
<td>8.91±0.4</td>
<td>129.4±12.2</td>
<td>25.3±1.9</td>
<td>14.3±1.3</td>
<td>98</td>
<td>25</td>
<td>921</td>
<td>54</td>
</tr>
<tr>
<td>1998.11</td>
<td>N1P1</td>
<td>577±20</td>
<td>8746±2194</td>
<td>41.4±5.1</td>
<td>7.67±0.2</td>
<td>80.8±2.9</td>
<td>25.0±4.2</td>
<td>11.1±1.3</td>
<td>54</td>
<td>38</td>
<td>738</td>
</tr>
<tr>
<td>N2/3P1</td>
<td>506±37</td>
<td>8873±2016</td>
<td>42.6±4.8</td>
<td>7.87±0.2</td>
<td>87.2±8.2</td>
<td>26.1±4.7</td>
<td>10.4±1.0</td>
<td>49</td>
<td>44</td>
<td>695</td>
<td>49</td>
</tr>
<tr>
<td>N1/3P1</td>
<td>506±41</td>
<td>8122±1345</td>
<td>40.1±2.6</td>
<td>8.31±0.6</td>
<td>91.7±8.0</td>
<td>29.3±2.5</td>
<td>10.5±0.7</td>
<td>63</td>
<td>35</td>
<td>818</td>
<td>57</td>
</tr>
<tr>
<td>N1P0</td>
<td>499±55</td>
<td>8896±1043</td>
<td>41.2±2.7</td>
<td>7.64±0.5</td>
<td>85.9±7.4</td>
<td>26.6±3.2</td>
<td>10.3±0.1</td>
<td>46</td>
<td>33</td>
<td>686</td>
<td>48</td>
</tr>
<tr>
<td>N2/3P0</td>
<td>496±87</td>
<td>7861±1843</td>
<td>39.8±3.7</td>
<td>7.49±0.4</td>
<td>75.1±21.7</td>
<td>27.6±2.0</td>
<td>10.5±1.2</td>
<td>47</td>
<td>36</td>
<td>901</td>
<td>48</td>
</tr>
<tr>
<td>N1/3P0</td>
<td>532±49</td>
<td>8259±1553</td>
<td>40.5±3.1</td>
<td>7.63±0.3</td>
<td>83.7±5.9</td>
<td>29.3±3.9</td>
<td>10.3±0.8</td>
<td>44</td>
<td>40</td>
<td>667</td>
<td>47</td>
</tr>
<tr>
<td>N0P0</td>
<td>531±35</td>
<td>8591±1610</td>
<td>41.4±3.0</td>
<td>7.71±0.4</td>
<td>87.9±6.8</td>
<td>29.2±1.4</td>
<td>10.2±0.8</td>
<td>52</td>
<td>32</td>
<td>855</td>
<td>48</td>
</tr>
<tr>
<td>1999.5</td>
<td>N1P1</td>
<td>527±41</td>
<td>10142±1666</td>
<td>39.8±1.7</td>
<td>7.03±0.2</td>
<td>97.3±10.4</td>
<td>24.3±5.1</td>
<td>10.7±0.8</td>
<td>39</td>
<td>18</td>
<td>1441</td>
</tr>
<tr>
<td>N2/3P1</td>
<td>556±26</td>
<td>9810±2107</td>
<td>39.0±2.8</td>
<td>7.22±0.5</td>
<td>99.8±11.9</td>
<td>25.7±2.3</td>
<td>10.0±2.3</td>
<td>40</td>
<td>23</td>
<td>1426</td>
<td>65</td>
</tr>
<tr>
<td>N1/3P1</td>
<td>559±32</td>
<td>9293±1699</td>
<td>38.0±2.1</td>
<td>7.17±0.5</td>
<td>102.9±10.6</td>
<td>24.8±2.8</td>
<td>10.5±0.4</td>
<td>36</td>
<td>28</td>
<td>1441</td>
<td>43</td>
</tr>
<tr>
<td>N1P0</td>
<td>575±26</td>
<td>10481±1331</td>
<td>40.4±1.5</td>
<td>6.84±0.16</td>
<td>102.2±12.8</td>
<td>25.2±4.3</td>
<td>10.8±0.1</td>
<td>36</td>
<td>23</td>
<td>1286</td>
<td>40</td>
</tr>
<tr>
<td>N2/3P0</td>
<td>571±26</td>
<td>8168±593</td>
<td>37.9±0.8</td>
<td>7.05±0.2</td>
<td>105.8±13.0</td>
<td>29.0±5.8</td>
<td>11.0±0.8</td>
<td>33</td>
<td>20</td>
<td>1580</td>
<td>42</td>
</tr>
<tr>
<td>N1/3P0</td>
<td>548±28</td>
<td>8664±1067</td>
<td>38.6±1.2</td>
<td>7.01±0.3</td>
<td>104.6±4.5</td>
<td>24.5±0.7</td>
<td>11.1±0.4</td>
<td>40</td>
<td>20</td>
<td>1440</td>
<td>41</td>
</tr>
<tr>
<td>N0P0</td>
<td>549±38</td>
<td>9357±1045</td>
<td>39.2±0.9</td>
<td>6.86±0.87</td>
<td>97.6±10.8</td>
<td>25.1±3.0</td>
<td>12.1±2.5</td>
<td>57</td>
<td>20</td>
<td>1566</td>
<td>51</td>
</tr>
<tr>
<td>採樣月份</td>
<td>处理</td>
<td>氮態氮</td>
<td>硝酸態氮</td>
<td>氮</td>
<td>磷</td>
<td>鉀</td>
<td>鈣</td>
<td>錳</td>
<td>鋅</td>
<td>鈣</td>
<td>鐵</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Month</td>
<td>Treat</td>
<td>NH₄⁺-N</td>
<td>NO₃⁻-N</td>
<td>N</td>
<td>P</td>
<td>K</td>
<td>Ca</td>
<td>Mg</td>
<td>Zn</td>
<td>Cu</td>
<td>Fe</td>
</tr>
<tr>
<td>1999.11</td>
<td>N1P1</td>
<td>482±107</td>
<td>7733±490</td>
<td>37.0±2.3</td>
<td>7.99±0.78</td>
<td>79.8±6.3</td>
<td>14.9±1.7</td>
<td>8.91±1.0</td>
<td>40</td>
<td>34</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>508±106</td>
<td>7228±608</td>
<td>35.9±0.9</td>
<td>7.78±0.34</td>
<td>85.8±5.6</td>
<td>13.7±0.8</td>
<td>8.38±0.2</td>
<td>42</td>
<td>20</td>
<td>558</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>447±45</td>
<td>7203±409</td>
<td>36.7±1.3</td>
<td>7.81±0.28</td>
<td>78.8±8.6</td>
<td>14.8±0.9</td>
<td>7.97±0.54</td>
<td>32</td>
<td>33</td>
<td>744</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>440±57</td>
<td>8273±1110</td>
<td>36.8±0.5</td>
<td>8.00±0.59</td>
<td>84.3±3.5</td>
<td>14.7±2.1</td>
<td>8.41±0.75</td>
<td>33</td>
<td>26</td>
<td>751</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>470±77</td>
<td>6894±1052</td>
<td>37.5±1.2</td>
<td>8.03±0.64</td>
<td>84.2±2.3</td>
<td>14.7±1.0</td>
<td>8.52±0.11</td>
<td>32</td>
<td>28</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>486±87</td>
<td>7050±1016</td>
<td>35.7±1.1</td>
<td>8.31±0.25</td>
<td>87.4±6.5</td>
<td>15.9±4.1</td>
<td>8.75±0.54</td>
<td>37</td>
<td>27</td>
<td>663</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>399±37</td>
<td>7137±668</td>
<td>36.6±0.8</td>
<td>7.78±0.37</td>
<td>84.3±3.0</td>
<td>14.1±2.0</td>
<td>8.72±0.38</td>
<td>40</td>
<td>21</td>
<td>565</td>
</tr>
<tr>
<td>2000.5</td>
<td>N1P1</td>
<td>329±174</td>
<td>6260±1539</td>
<td>35.1±3.3</td>
<td>6.57±0.58</td>
<td>105.2±7.7</td>
<td>18.0±1.0</td>
<td>13.8±0.4</td>
<td>56</td>
<td>17</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>356±198</td>
<td>5788±1225</td>
<td>34.2±2.0</td>
<td>6.72±0.34</td>
<td>112.0±5.5</td>
<td>17.8±1.2</td>
<td>13.3±1.1</td>
<td>57</td>
<td>17</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>292±69</td>
<td>5934±1765</td>
<td>31.6±2.8</td>
<td>6.58±0.53</td>
<td>114.6±8.9</td>
<td>17.7±0.8</td>
<td>12.0±1.3</td>
<td>59</td>
<td>16</td>
<td>743</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>274±90</td>
<td>6520±1389</td>
<td>34.1±3.3</td>
<td>6.32±0.50</td>
<td>107.5±3.5</td>
<td>17.2±1.6</td>
<td>12.1±0.7</td>
<td>57</td>
<td>36</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>347±153</td>
<td>5316±899</td>
<td>33.6±2.9</td>
<td>6.48±0.55</td>
<td>109.9±6.7</td>
<td>17.2±0.5</td>
<td>11.1±1.8</td>
<td>44</td>
<td>16</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>382±211</td>
<td>5723±1392</td>
<td>42.9±16.3</td>
<td>6.36±0.59</td>
<td>108.8±3.8</td>
<td>18.5±2.3</td>
<td>12.8±0.7</td>
<td>37</td>
<td>16</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>272±157</td>
<td>4767±1219</td>
<td>33.9±2.8</td>
<td>6.60±0.69</td>
<td>108.9±4.2</td>
<td>16.9±2.9</td>
<td>12.5±1.0</td>
<td>41</td>
<td>17</td>
<td>737</td>
</tr>
<tr>
<td>2000.11</td>
<td>N1P1</td>
<td>176±59</td>
<td>7070±1483</td>
<td>28.3±6.2</td>
<td>7.27±0.34</td>
<td>105.3±7.9</td>
<td>22.0±4.3</td>
<td>13.5±0.6</td>
<td>84</td>
<td>28</td>
<td>1263</td>
</tr>
<tr>
<td></td>
<td>N2/3P1</td>
<td>165±150</td>
<td>6399±1125</td>
<td>31.2±8.3</td>
<td>7.37±1.25</td>
<td>100.6±6.3</td>
<td>18.2±4.8</td>
<td>13.5±0.7</td>
<td>81</td>
<td>30</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>N1/3P1</td>
<td>90±57</td>
<td>6077±716</td>
<td>28.9±2.9</td>
<td>7.18±0.77</td>
<td>98.1±8.5</td>
<td>21.5±4.7</td>
<td>12.8±1.5</td>
<td>80</td>
<td>29</td>
<td>1141</td>
</tr>
<tr>
<td></td>
<td>N1P0</td>
<td>138±55</td>
<td>6551±757</td>
<td>29.1±6.4</td>
<td>7.86±0.74</td>
<td>101.2±19.4</td>
<td>22.6±6.6</td>
<td>14.1±1.2</td>
<td>79</td>
<td>29</td>
<td>1136</td>
</tr>
<tr>
<td></td>
<td>N2/3P0</td>
<td>170±49</td>
<td>6604±1640</td>
<td>33.2±6.1</td>
<td>7.63±0.60</td>
<td>104.8±16.8</td>
<td>16.3±4.6</td>
<td>12.9±1.7</td>
<td>70</td>
<td>29</td>
<td>892</td>
</tr>
<tr>
<td></td>
<td>N1/3P0</td>
<td>176±77</td>
<td>7102±1790</td>
<td>27.7±2.8</td>
<td>7.69±0.72</td>
<td>97.2±8.5</td>
<td>22.1±6.7</td>
<td>13.8±1.4</td>
<td>74</td>
<td>31</td>
<td>1114</td>
</tr>
<tr>
<td></td>
<td>N0P0</td>
<td>139±46</td>
<td>7038±1445</td>
<td>34.3±5.8</td>
<td>8.07±0.50</td>
<td>100.3±19.3</td>
<td>19.1±4.3</td>
<td>14.0±0.7</td>
<td>79</td>
<td>28</td>
<td>1097</td>
</tr>
</tbody>
</table>

* : More details of N1P1, N2/3P1, N1/3P1-----etc. are at Table 2.
**: Vegetables ingredients expressed by dry weight
二、不同氮磷肥處理對表土品質的影響

試驗期間各處理表土（0-20 cm）之 pH、EC、機質、總氮、速效態氮、速效態磷及有效性磷的變化情形見表 1。表土之 pH 值在試驗期間逐漸上升（於 5.9 至 6.5），可能由於化學肥料施用及所使用的堆肥為偏磷性，及灌漿水優中性（pH 6.6-7.0）等之故。由表 1，土壤中機質似乎沒有增加的趨勢，且經統計分析，各處理間並沒有顯著差異。因氮磷肥施用的情況，試驗期間土壤的 EC 值並沒有明顯的下降趨勢。試驗後各處理 0-20 cm 表土中速效態氮濃度在第 1 次採樣時，即大幅降低（由 36 降至 8 mg kg⁻¹），以後均維持在 10 mg kg⁻¹ 以下。土壤的總氮似乎有下降的趨勢，試驗初期各處理平均值最高為 2.3 g kg⁻¹，至試驗後期平均值最高為 1.9 g kg⁻¹。不同處理表土中速效態氮的濃度在週期間變異頗大，於控制肥料的使用一段期間後，土壤中速效態氮的濃度就少有超過 40 mg kg⁻¹。表土中有機質的濃度，即使在不施堆肥的情況下（D、E、F、G），也始終保持在 1000 mg kg⁻¹ 以上。由表 1，試驗期間土壤中總磷濃度的變化觀察結果未見清除性下降之趨勢，由於土壤及堆肥中磷的濃度在各處理間均無顯著差異，故推估在此施作條件下，似乎由堆肥 2 號有機質肥料提供之磷肥亦未供應所用。試驗期間，不同處理之土壤成分與濃度分別進行統計分析，結果表土之 pH 只有 87 年 10 月 C(N13P3)、F(N13P3)、G(N10P3) 處理顯著高於 A(N1P1)、B(N2P2)、D(N1P1P) 處理，於表土之速效態氮則顯示有兩次顯著性差異，多為 87 年 6 月 A 處理顯著高於 B、C、F、G 處理，及 88 年 3 月 A 處理顯著高於 B、C、D、E、F、G 處理，而表土之有機質施肥僅有 88 年 2 月顯示 A、B、C 處理顯著高於 G 處理。

圖 2. 各處理在試驗期間 0-20 cm 土壤酸度與抽出液酸度之變化情形。試驗期間土壤酸度與抽出液酸度之K⁺、Ca²⁺、Mg²⁺（未顯示）Na⁺、NO₃⁻、Cl⁻ 似乎沒有明顯的增加趨勢。土壤酸度和抽出液之NO₃⁻、Cl⁻ 有顯著的週期間變異，經統計分析結果顯示這些離子除了 87 年 10 月外，各處理酸度與抽出液之酸度似乎沒有顯著的差異。由圖 1 顯示長期施用堆肥對土壤比電導度值似乎沒有降低的效果，但土壤酸度與抽出液的SO₄²⁻ 卻有顯著下降的趨勢（由 906 升至 1350 mg kg⁻¹），可能由於本區灌溉水質：pH 值 6.6-7.0，EC 值 0.96-2.43 ds m⁻¹，Na⁺ 7.9-222 mg l⁻¹，Ca²⁺ 159-350 mg l⁻¹，Mg²⁺ 60.4-71.0 mg l⁻¹，K⁺ 19.1-119 mg l⁻¹，SO₄²⁻ 38.0-61.5 mg l⁻¹，總磷離子含量 0.64-74.0 mg l⁻¹，碳酸離子 743-1430 mg l⁻¹。李(1972) 曾指出雲林地區含鹽分較高的地下水，主要分布於沿海與內陸之西螺地區，而灌溉水含有高氯電導度、鈣、鎂、硫酸根及碳酸鹽離子，可能為造成處理間施肥效果不顯著的原因之一。

三、不同氮磷肥處理對不同深度土壤品質的影響

試驗期間各處理土壤不同深度，土水（1:5 w/v）抽出液 EC 值的變化情形。由各處理不同深度的 EC 值來看，表土（20 cm）以下不同深度土壤的 EC 值變化不大，且未見土壤土壤深度增加而降低，可見鹽分已沉入下層。由圖 3 可見，試驗的第三年 20 cm 以下土壤的 EC 值似乎有降低的趨勢。由試驗期間各處理不同深度土壤之抽出液 EC 值，經分別作統計分析，多數未顯示差異。由圖 4 可見試驗期間土壤不同深度土壤中速效態氮的濃度在第 1 次採樣時，各處理土壤中速效態氮濃度逐漸降低，此降極低同じ影響到深層土壤。各土層施用態氮之濃度差異並不大，可見施用態氮已沉入下層土壤，實驗期間施用態氮之濃度似乎與氣候（乾、雨季）之變化有大的相關。然試以各 4 之可見在堆肥施作的施用下，確實造成土壤中無機態氮濃度的降低，因此化學肥料合理使用於農業環境的保護確有其效。將試驗期間各處理土壤不同深度土壤中速效態氮的濃度作統計分析，只有 88 年 9 月 121-150 cm 處 A、D 處理顯著高於 B、C、E、F、G 處理，88 年 3 月 21-40、41-60、61-90、91-120 cm 處，A 處理土壤顯著高於 B、C、D、E、F、G 處理。其餘則均未顯示顯著差異，原因可能由於一般塑膠防雨溫室大都施土 1 m 以上，本試驗區不例外，本區 140cm 左右後，土壤有熟化結構，由此造成潮濕土壤之磷酸根易於往下繼續淋洗，此外堆肥 2 號有機質肥料所含的無機態氮偏高（>2%），營養水含有的硝酸根離子等，都可能造成施氮化肥效果不顯著。

圖 5 顯示試驗期間不同深度土壤，有效無機態氮濃度的變化情形。由圖 5 可見，有機態肥料施用於土壤深度增加而減少，各處理不同深度土壤的有效性磷肥作統計分析均無顯著性差異，由圖 5 可見，土壤中有效態磷之濃度並沒有明顯的下降趨勢。這些結果顯示於施肥处理施用於土壤場合，有效態氮在土壤中之性質及施肥方法下施用於土壤上可能不致造成土壤及環境的破壞。由此建議於施用肥料施用於土壤時，於 NETWORK の研究下，應該可以不施或必須施之施用。
圖 1. 不同氮磷肥處理在試驗期間土壤性質的變化情形
Fig. 1. The changes of soil from the surface layer (0-20 cm) by different treatments
Fig. 2. The changes of ions of saturation extract from the surface layer (0-20 cm) by different treatments.
圖 3. 氮磷化肥不同處理在各層土壤中 EC（1:5）的變化情形
Fig. 3. The changes of ECs (1:5) in various depth of soil by different treatments
A.N1P1; B.N2/3P1; C.N1/3P1; D.N1P0; E.N2/3P0; F.N1/3P0; G.N0P0
圖 4. 氮鹽在各層土壌中 NO₃-N 的變化情形
Fig. 4. The changes of NO₃-N in various depth of soil by different treatments
A. N1P1; B. N2/3P1; C. N1/3P1; D. N1P0; E. N2/3P0; F. N1/3P0; G. N0P0
圖 5. 氮磷不同處理在各層土壤中有效性磷的變化情形
Fig. 5. The changes of available P$_2$O$_5$ in various depth of soil by different treatments
A. N1P1; B. N2/3P1; C. N1/3P1; D. N1P0; E. N2/3P0; F. N1/3P0; G. N0P0
引用文獻

1. 王錦波、吳正宗、張頒。1994。硝酸態氮測定方法的選定與影響其含量的一些營養元素，設施園藝之研究與技術開發計畫執行成果報告 p.343-350。
2. 李寶鍾、吳淑芳、張文亮。1993。農林地區水井淤塞的原因與清除方法之研究。八十二年度農業工程研討會台中。八十二年度農業工程研討會論文集 p.71-78。
3. 黃秋慶、蔡宜順、黃文鴻。1989。中部地區主要蔬菜栽培之土壤障害因子調查。台中縣農業改良場研究彙報 24:56-70。
4. 詹志清、丁文彥、吳文通。1991。腐植酸及有機質肥料對青蟲生長及連作之影響。花蓮縣農業改良場彙報 7:133-146。
5. 郭宗耀、吳世偉。1988。蔬菜設施栽培迴作問題及病蟲害管理。第二屆設施園藝研討會專集 p.172-191。台灣省農業試驗所鳳山熱帶園藝試驗分析編印。
6. 郭宗耀、黃重義、謝義芳、蔡宜順。1990。防雨及無加溫設施栽培研究－蔬菜生長及連作問題探討。設施園藝之研究與技術開發計畫執行成果報告 p.12-18。
7. 謝鎮中、王錦波。1997。有機肥料施用對作物硝酸態氮銅含量之影響。有機農業科技成果研討會專刊 p.100-108。
8. 三好洋。1978。土壤診斷法。農山漁村文化協會。東京。
10. 河西孝司。1986。トマト栽培にかける農業障害の効果。農業技術研究 40(11):20-23。
Rate-reducing Use of Nitrogen and Phosphorous Fertilizers for Cultivation of Vegetables in Plastic Protected Structure

J. C. Lin and Huang, S. N.

Summary

Due to the uneven distribution of rainfall and the damage of tropical storms, vegetable production is very different in the summer. Therefore, the use of simple plastic houses to grow fast-growing vegetables became popular in the last 1-2 decades. However, the continuous application of chemical fertilizers plus the lack of drenches with natural rain waters, accumulation of salts has become a serious problem which limited vegetable production in the houses, and the environment is also polluted. In 1997, a simple plastic house in the major vegetable-producing area in Siło, Yulin country, which had been continuously used for vegetable production in the last decade, was used to study the effect of fertilizer rate-reducing use on the cultivation of vegetables. The plot before studies was found with high electrical conductivity (EC >3 dS m⁻¹), high nitrate nitrogen (>40 mg kg⁻¹), and high available phosphoric anhydride (> 1000 mg kg⁻¹). In the experiment period from 1997-2000, 600 kg ha⁻¹ of organic fertilizer (Taiwan Fertilizer No.2) and 300 kg ha⁻¹ of soybean dregs and no N or P chemical fertilizer was used in the plot. Results indicated that yield of water convolulus and amaranth was not effected. If soil contained high phosphorous, and in the presence of organic fertilizer, phosphorus chemical fertilizer is not necessary.

Key words: Protected cultivation, The problem of crop succession, Soil fertility, Nitrate nitrogen.

Accepted for publication: October 2, 2001.

1. Contribution No.266 from Tainan District Agricultural Improvement Station.
2. Assistant Agronomist and Ex-director, Tainan DAIS. 350, Section 1, Linsen Rd., Tainan city Taiwan, R. O. C.