不同土壤水分含量处理对‘麻豆文旦’生育、产童及品质之影响

陳溪潭 呂俊堅 張明聰

摘 要

陳溪潭、呂俊堅、張明聰．1999．不同土壤水分含量处理对麻豆文旦生育、产量及品质之影响。台南區農業改良場研究彙報 36：37～45。

本研究以微喷灌技术供水设备，配合简易塑料袋为防雨设施，并设立水分张力计，将土壤含水量设计区分为 20%（－8～－12 分巴）、15%（－30～－40 分巴）及 10%（－50～－70 分巴）三处理，以不同土壤水分含量之全生育期试验探讨三年生麻豆文旦，其结果为植株抽梢株率与土壤水分含量 10% 者为最高达 24.5%，其次土壤水分含量 15% 者为 18.9%；土壤水分含量 20% 者最低仅 9.5%。植株花芽数结果以土壤水分含量 20% 者为最高达 25.7%，其次土壤水分含量 15% 者为 13.4%，土壤水分含量 10% 者最低仅 7.1%，且植株最后结果数以土壤水分含量 20% 及 15% 者为较高，分别为 22.8 個及 21.8 個，而土壤水分含量 10% 者仅 9 個。果实品质分析，以土壤水分含量 10% 者，糖度最高为 11.2 度，含糖率最低仅 34.1%，且果实小；其次土壤水分含量 15% 者糖度为 9.7 度，含糖率最高为 43.3%，但少数大粒果實，果肉有异味产生；而土壤水分含量 20% 者，糖度最低仅 9.0 度，含糖率亦仅为 38.2%，果实大，且部份大粒果實果肉有酸米及异味产生。

關鍵詞：麻豆文旦，土壤含水量，生育，产量，品质。
接受日期：1999 年 11 月 2 日。

前 言

‘麻豆文旦’（Citrus grandis，Osbeck cv. Matou Wentan）为本省重要经济果树之一，至 1998 年全省栽培面积达 6,719 公顷（1），而多数果園分佈於坡地上，且本省气候每年於九月至翌年四月为乾旱期（2），又夏季期间之降雨量亦往往分佈不均，在無適當的土壤水分供應条件下，极易造成土壤缺水，而影响植株生长发育。麻豆文旦为属柑桔類果树，虽然柑桔類植株在冬季期间，需要适度的乾燥以促进翌春开花（8, 9, 16），但过度乾旱亦会造成叶片萎缩而严重落果（18），因此防止植株过度落果为所必需；且二、三月春季抽梢開花期間亦為乾旱期，土壤缺水亦影响春梢抽生開花、著果及幼果期生长。但冬季期间为防止落果而供给过多土壤水分，反而造成冬梢

1 行政院農業委員會台南區農業改良場研究報告第 256 號。本試驗期間由鄭芳宗先生協助田間調查，謹誌謝忱。

2 台南區農業改良場助理研究員、助理研究員、研究員兼秘書，台南縣 712 新化鎮口埤 18 號。
抽生，是否影響翌年枝梢抽穗率，且果實採收前經常下雨，土壤水分供給過多是否影響品質，實有待加以探討。因此本研究專門針對農業問題，研究防豆文旦不同生育期的適時土壤水分含量、植株需水量及灌溉方法等，藉以解決防豆文旦因乾旱而產生的生育障礙問題，並提供一套合理的水分管理方法，以提高結實率、產量及品質，以供栽培者灌溉之參考。

材料及方法

一、試驗園之設立：

本試驗園係設立於張（1995）所建立之土壤水分研究園，該園設於 1993 年於本場新化分場（台南縣新化鎮）內之 0.15 公頃坡地，經由土壇裴為平地後挖設大型種植穴，種植穴大小依長×寬×深為 1.7m×1.7m×1.5m，內舖設與種植穴一樣大小的 PVC 布（加網之質料），以隔絕水分之滲透，再回填隔離所挖種植穴之土壤，依此方式順序挖設種植穴共 36 個，分 3 行排列，行距 4.3m，每行種植穴之距離為 3m。每個種植穴的土壤均施用 120 公斤的有機質肥料（葫蘆蔘，有機質 64%）並與之充分混合，以有效隔絕雨水對植株水分之影響，依 3 行植株的排列搭建 3 棟高 3.2 m 塑料膜及透氣性較佳的 PVC 膠布，種植穴水分之供應系統採微噴灌式（Microsprinkler system），每植穴內相對立 2 個 180 度噴灌範圍之噴頭，以能均勻地完全噴灑於土壤表面，微噴灌以 1.4HP 馬達加壓抽水，兩個噴頭出水量每分鐘共計 2 公升，以微電腦定時控制出水時間。

1 年生盆栽防豆文旦嫁接苗於 1994 年 3 月 15 日定植於植穴中並進行培養，培養期間配合施用化學肥料及有機液肥，植株成長後，於 1995 年 10 月 10 日進行修剪，以供各項試驗調查之用。修剪後株高平均為 195 公分，幅寬為 217.7cm×222.5cm，試驗前土壤含水量 20% 處理區，植株單株平均葉片數為 1,170 片/株，而 15% 及 10% 處理區分別為 1,105 片/株及 1,062 片/株。植穴之土壤質地為砂質壤土，總體密度（Bulk density）1.45，總體孔隙率（Total porosity）45.3，土壤田間容水量 19.92%（0.1Bar）。防豆文旦植株總著花數為 8% 之土壤含水量。

土壤不同含水量之設施，以微噴灌系統分每天噴灌時間為 8～12 分、6～10 分及 4～8 分，使植穴之土壤含水量分別為 20% 、15% 及 10% 等三種處理，每處理 1 株（1 植穴），採 RCB 設計，4 重複，植穴並配置處理 60 公分長水分張力計（Tensiometer, Irrrometer Co.）1 支。不同土壤含水量設定自 1995 年 10 月 10 日植株修剪後，至翌年果實採收前實施之，土壤含水量依（偏重～乾重）/乾重×100% 計算。

二、不同土壤含水量植株生育調查及果實品質分析：

(1) 植株生育調查：

防豆文旦植株於 1995 年 10 月修剪後，標記植株全部結果母枝（40～74 支），每月調查結果母枝抽生新梢長，於 1995 年 3 月份植株春梢抽生後，統計營養新梢抽生率、長度、葉片數與營養新梢抽生月份分佈比率，及其抽穗率、結果枝長度、葉數、著花數、結果枝抽生月份分佈比率與結果枝不同花序梗肥形態之比率。植株於 4 月上旬起落葉量減緩至極少後，於 5 月上旬調查植株葉片總數，包括新梢葉片數及母枝剩餘之老葉片數，並於當年生營養枝葉片序位之中間葉片數量，每株取樣 20 片，每處理共 80 片葉片，於葉面積儀計算葉片面積，並統計比較處理間營養枝中間葉序之葉片葉片大小，並於 6～7 月間調查植株夏梢抽生數。於 6 月份植株生理落果結束後調查結果率，並於 9 月上旬果實成熟時採收，調查最後結果數與產量，採收後 7 天進行果實品質分析。

(2) 果實品質分析：

1. 果重：測至最近之公克數。
2. 果皮厚度：果實橫切二半，於赤道處以游標尺測量果皮厚度。
3. 果肉率：果實除去果皮後所剩之果肉球重，求佔果實重之百分比。
4. 果汁率：果肉剖開後以鳳梨榨汁器壓汁器壓汁過濾後之果汁量，求佔果實重之百分比。
5. 可溶性固形物：俗稱糖度，以手提折光糖度計測定，以”Brix”表示。
6. 可滴定酸：以 ATAGO FS-2 果汁酸度計測定，取 1 CC. 果汁加水至 10 CC. 以 0.1 N NaOH 標準液滴定至轉色為止，並換算成枸櫞酸含量的百分比。

結果

一、新梢的生育習性：
麻豆文旦新梢之抽生主要由頂梢抽生為最多，而新梢可依性質分為營養梢與結果枝，植株以不同土壤水分含量全生育期，由表 1 調查結果可知，自 10 月修剪後至翌年 3 月春季開花期間計 5 個月中，枝梢抽生中營養梢之抽生率，以土壤含水量 20% 之處理為最高，達 90.5%，其次土壤含水量 15% 者為 81.1%，而以土壤含水量 10% 者僅為 75.5%，顯然土壤含水量高低會影響營養梢之抽生率。至於對營養梢之花序，由表 1 中可知，其受土壤水分之影響亦甚為顯著，以土壤含水量 20% 之處理區，營養梢生長長度最長，較土壤含水量 10% 者顯著增加 6.8 cm，且枝梢平均葉片數，亦較土壤含水量 10% 者顯著增加 2.5 片。又由 6 月上旬調查植株平均葉片數，亦以土壤含水量 20% 者 3,605 片/株（含老葉 649 片）為最多，其次土壤含水量 15% 者為 2,915 片/株（含老葉 433 片），而以土壤含水量 10% 者最少僅為 2,673 片/株（含老葉 367 片）；且比較營養梢葉片與葉片平均數，亦以土壤含水量 20% 者 104.1cm²/片為最大，其次土壤含水量 15% 者為 86.4cm²/片，而以土壤含水量 10% 者最小僅為 71.7cm²/片。而營養梢此 5 個月之抽生分佈情形，由表 2 可知，無論土壤水分含量高低，其枝梢抽生主要分佈於 2 月份，但以土壤含水量 10% 者為最高達 86.6%，其次土壤含水量 20% 、15% 者分別為 46.9% 、61.2%；且在冬季 11 月、12 月及翌年元月三個月中，其營養梢之抽生分佈，以土壤含水量 10% 者最少僅為 8.8%，較土壤含水量 20% 及 15% 者分別為 27.5% 及 30.3% 有顯著減少；而於 3 月份枝梢抽生之分佈，以土壤含水量 20% 處理者 25.6% 為最多，均較土壤含水量 15% 及 10% 者分別顯著增加 17.1% 及 20.9%。
表1. 不同土壤水分含量处理对麻豆文旦营养梢生长之影响。
Table 1. Effect of different soil water content treatments on the growth of vegetative flush of Matou Wentan.

<table>
<thead>
<tr>
<th>Soil water treatment (%)</th>
<th>Vegetative flush (%)</th>
<th>Length of vegetative flush (cm)</th>
<th>Leaf number of vegetative flush</th>
</tr>
</thead>
<tbody>
<tr>
<td>20±1.2</td>
<td>90.5</td>
<td>27.9</td>
<td>15.6</td>
</tr>
<tr>
<td>15±1.3</td>
<td>81.1ab</td>
<td>24.7ab</td>
<td>14.4ab</td>
</tr>
<tr>
<td>10±1.2</td>
<td>75.5b</td>
<td>21.1b</td>
<td>13.1b</td>
</tr>
</tbody>
</table>

² Mean value within a column followed by the same letters do not differ significantly at p = 0.05 according to Duncan's multiple range test.

表2. 不同土壤水分含量处理对麻豆文旦营养梢生分佈比率之影响。
Table 2. Effect of different soil water content treatments on the distribution of vegetative flush of Matou Wentan.

<table>
<thead>
<tr>
<th>Soil water treatment (%)</th>
<th>Vegetative flush sprouting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20±1.2</td>
<td>7.3a</td>
</tr>
<tr>
<td>15±1.3</td>
<td>3.5a</td>
</tr>
<tr>
<td>10±1.2</td>
<td>1.7a</td>
</tr>
</tbody>
</table>

² Mean value within a column followed by the same letters do not differ significantly at p = 0.05 according to Duncan's multiple range test.

土壤水分含量对植株抽穗率之影响，由表3可知，以土壤含水量10%者为最多，达24.5%，其次土壤含水量15%者为18.9%，而土壤含水量20%者最少，仅9.5%。至土壤根系之发育，由表3中可知，不論土壤水分含量的高低，对结果枝之长度、叶片数或著花数均无显著差异。而结果枝在此5个月的抽生分布情形，由表4可知，无论土壤水分含量高低，结果枝之抽生主要分布于2月份，以土壤含水量10%者最高，达87.5%，其次土壤含水量20%、15%者分别达63.4%、75.7%；其次分布于元月份，且土壤含水量20%或15%之抽生率较土壤含水量10%者有显著增加。显示土壤含水量越低则结果枝抽生分布越集中在2月份，而土壤水分越高结果枝则有提前萌发。对结果枝花序形成之影响，由表5可知，3年生之植株不论土壤水分含量之高低，其花序枝形成均以带荚花序枝为最高，其次为带荚单顶花枝，无荚花序枝最少，而无荚单花枝则无抽生，且处理间均无显著差异。
表 3. 不同土壤水分含量处理对麻豆文旦結果枝生長之影響
Table 3. Effect of different soil water content treatments on the growth of inflorescence of Matou Wentan.

<table>
<thead>
<tr>
<th>Soil water treatment (%)</th>
<th>Inflorescence (%)</th>
<th>Length of Inflorescence (cm)</th>
<th>Leaf number of Inflorescence</th>
<th>Flower number of Inflorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ± 1.2</td>
<td>9.5b</td>
<td>12.1a</td>
<td>7.0a</td>
<td>8.3a</td>
</tr>
<tr>
<td>15 ± 1.3</td>
<td>18.9ab</td>
<td>13.6a</td>
<td>7.9a</td>
<td>7.3a</td>
</tr>
<tr>
<td>10 ± 1.2</td>
<td>24.5a</td>
<td>12.6a</td>
<td>7.8a</td>
<td>7.1a</td>
</tr>
</tbody>
</table>

注：同一列中相同字母的值不显著不同（p=0.05，Duncan's multiple range test）。

表 4. 不同土壤水分含量处理对麻豆文旦結果枝抽生花序分布比率之影響
Table 4. Effect of different soil water content treatments on the distribution of inflorescence of Matou Wentan.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ± 1.2</td>
<td>0</td>
<td>3.4a</td>
<td>22.0a</td>
<td>63.4b</td>
<td>11.2a</td>
</tr>
<tr>
<td>15 ± 1.3</td>
<td>0</td>
<td>0.0a</td>
<td>22.3a</td>
<td>75.7b</td>
<td>2.0b</td>
</tr>
<tr>
<td>10 ± 1.2</td>
<td>0</td>
<td>0.0a</td>
<td>10.8b</td>
<td>87.5a</td>
<td>1.7b</td>
</tr>
</tbody>
</table>

注：同一列中相同字母的值不显著不同（p=0.05，Duncan's multiple range test）。

表 5. 不同土壤水分含量处理对麻豆文旦結果枝花序形态之影響
Table 5. Effect of different soil water content treatments on the percentage of different type inflorescence of Matou Wentan.

<table>
<thead>
<tr>
<th>Soil water Treatment (%)</th>
<th>Leafy inflorescence (%)</th>
<th>Leafy inflorescence with a terminal flower (%)</th>
<th>Leafless inflorescence (%)</th>
<th>Leafless inflorescence with a single flower (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ± 1.2</td>
<td>88.1a</td>
<td>7.5a</td>
<td>4.4a</td>
<td>0</td>
</tr>
<tr>
<td>15 ± 1.3</td>
<td>77.5a</td>
<td>14.4a</td>
<td>8.1a</td>
<td>0</td>
</tr>
<tr>
<td>10 ± 1.2</td>
<td>83.4a</td>
<td>10.9a</td>
<td>5.7a</td>
<td>0</td>
</tr>
</tbody>
</table>

注：同一列中相同字母的值不显著不同（p=0.05，Duncan's multiple range test）。

二、结果分析
麻豆文旦结果率除受不同花序枝形态之影响，以带叶花序枝有较高之结果率外，亦受土壤水分含量多少之影响颇大。由表 5 可知，三处理间隔花序枝形态均主要为带叶花序枝，且处理间均无
顯著差異，對植株之結果能力並無影響。但由表 6 可知，生長在 10% 低土壤含水量之植株，其花朵結果率極低僅為 7.1%，而生長在 15% 及 20% 較高土壤含水量者，其花朵結果率較 10% 者分別增加 6.3% 及 18.6%。植株每株結果量與產量亦有相同的現象，即生長在較低土壤含水量（10%）者每株平均結果量僅有 9.0 個，其平均產量亦低僅為 7.7Kg，而生長在較高土壤含水量（15% 及 20%）者每株平均結果量較高，分別有 21.8 個及 22.8 個，相對平均產量亦高，分別為 22.8Kg 及 24.6Kg，而生長在 15% 及 20% 土壤含水量者，植株之結果量與產量均無差異，由此可見在土壤水分較充足時，如土壤含水量在 15% 以上時，即可防止落花落果提高結果率，並穩定產量。

表 6. 不同土壤水分含量處理對豌豆文旦結果率及產量之影響。
Table 6. Effect of different soil water content treatments on the fruiting set and yield of Matou Wentan.

<table>
<thead>
<tr>
<th>Soil water treatment (%)</th>
<th>Fruiting set /flowers/plant (%)</th>
<th>Fruits/plant</th>
<th>Yield/plant (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20±1.2</td>
<td>25.7a</td>
<td>22.8a</td>
<td>24.6a</td>
</tr>
<tr>
<td>15±1.3</td>
<td>13.4b</td>
<td>21.8a</td>
<td>22.8b</td>
</tr>
<tr>
<td>10±1.2</td>
<td>7.1b</td>
<td>9.0b</td>
<td>7.7b</td>
</tr>
</tbody>
</table>

* Mean value within a column followed by the same letters do not differ significantly at p=0.05 according to Duncan's multiple range test.

三、果實品質：

由表 7 可知，生長在 10% 土壤含水量之豌豆文旦，平均果重較小，牛實含汁率最低僅為 34.1%，但有較高之糖度可達 11.2%，酸度亦較高為 0.302%；生長在 15% 土壤含水量之豌豆文旦，平均果重中等，果實含汁率最高可達 43.3%，而糖度為 9.7%，且僅有 10% 之大形果實果肉有異味產生；而生長在 20% 土壤含水量之豌豆文旦，平均果重最重，果實含汁率為 38.2%，但糖度最低僅為 9.0%，酸度亦最低僅為 0.223%，且有 25% 之大形果實果肉有乾米或異味產生。由此顯示，土壤含水量高低影響果實品質甚為明顯，果實生長在低土壤水分含量，果實小果汁率較低，而果實糖度高；而在 15% 及 20% 土壤含水量時，植株在相同結果量情況下，土壤水分供給越多，植株生長越旺盛，則果實增大果皮增厚，且部份大形果實有異味或乾米之現象，果實品質降低。

表 7. 不同土壤水分含量處理對豌豆文旦果實品質之影響。
Table 7. Effect of different soil water content treatments on the fruit quality of Matou Wentan.

<table>
<thead>
<tr>
<th>Soil water treatment (%)</th>
<th>Weight /fruit (g)</th>
<th>Rind thickness (mm)</th>
<th>Pulp (%)</th>
<th>Juice (%)</th>
<th>Sugar content (° Brix)</th>
<th>Acidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20±1.2</td>
<td>1067.5a</td>
<td>10.4a</td>
<td>68.6b</td>
<td>38.2b</td>
<td>9.0b</td>
<td>0.223b</td>
</tr>
<tr>
<td>15±1.3</td>
<td>1032.0a</td>
<td>8.6b</td>
<td>73.9a</td>
<td>43.3a</td>
<td>9.7b</td>
<td>0.258b</td>
</tr>
<tr>
<td>10±1.2</td>
<td>845.2b</td>
<td>9.9ab</td>
<td>71.4cb</td>
<td>34.1c</td>
<td>11.2a</td>
<td>0.302a</td>
</tr>
</tbody>
</table>

* Mean value within a column followed by the same letters do not differ significantly at p=0.05 according to Duncan's multiple range test.
討論

張等 (77) 研究芒果生長於土壤含水量為 10% 、15% 及 20% 等環境中，其結果為，生長在 10% 低土壤含水量植株抽生冬梢較少，而生長在 15% 以上土壤含水量植株抽生冬梢較多。本研究亦有相同之趨勢，在二種不同土壤含水量（10%、15% 及 20%）之全生育控制下，生長於其中之麻豆文旦植株，自 10 月 10 日枝條修剪後，於冬季期間（11 月、12 月及 1 月）植株之抽梢率，以生長在 10% 土壤含水量的植株抽梢最少，僅有 8.8% 之營養梢及 10.8% 之結果枝抽生，生長在 15% 土壤含水量者抽生 30.3% 營養梢及 22.3% 結果枝，而生長在 20% 土壤含水量者抽生 27.5% 營養梢及 25.4% 結果枝（表 2 及表 4），亦即土壤乾燥時（10% 土壤含水量）確實能有效抑制冬季時期新梢抽生量，但營養梢發育較弱，且葉片數較少。

一般熱帶及亞熱帶果樹常利用乾旱處理來促進花芽分化（12），如荔枝（15）、番荔枝（17）、檳榔（16、19）、柳橙（18）等果樹，利用土壤乾旱處理促進花芽分化，增加植株抽穗率。反之土壤灌溉過多則會降低果樹抽穗率，且增加營養新梢生率（11）。本研究亦有相同之趨勢，麻豆文旦植株之結果枝抽生率（抽穗率），以 10% 土壤含水量者為最高，達 24.5%，其次以 15% 土壤含水量者為 18.9%，而 20% 土壤含水量者最低僅為 9.5% （表 3）。冬季期間土壤水分含量越低，植株抽穗率越高，亦即土壤乾燥時（10% 土壤含水量）確實能有效促進花芽分化，而土壤灌溉過多則會降低植株抽穗率。雖然柑桔類果樹在乾旱之環境下有利於花芽分化，但土壤過於乾旱，亦會造成植株嚴重落葉（9, 18）。本研究麻豆文旦在不同土壤含水量狀況下對落葉之影響，由陳等（6）已發表之報告指出，冬季期間在 10% 低土壤含水量下，植株落葉量僅少且無明顯落葉，當 2～3 月春梢抽生開花期間，植株雖有明顯落葉，但以 10% 低土壤含水量落葉量最大，由於 10% 低土壤含水量為略高於暫時凋萎點含水量之 2 倍，因此冬季低溫期植株尚能保葉過冬，但春季抽梢盛期植株需大量水分，顯然的土壤水分不足則會導致大量落葉。

在乾旱時期利用灌溉處理可增加芒果（17, 11, 14, 19）、檳榔（13）等果樹產量及品質。而麻豆文旦植株之結果量，受不同花序枝形態之影響，以帶葉花序枝比率越高結果率越高（2, 5），本研究在二種不同土壤含水量狀況下，三年生之植株均抽生很高的帶葉花序枝比率，且三處理間並無差異（表 5），則植株均具有很高的結果能力。又本研究在全生育期調查中，麻豆文旦植株均唯有透明塑膠布做為遮雨設施，以防止土壤受外界雨水干擾，能準確地設定不同土壤水分狀況，植株在較高的土壤含水量下（15% ～20%）比在低土壤含水量（10%）時，植株著果量較高（表 6），顯示春季乾旱時期利用灌溉，確實可增加麻豆文旦之著果及產量。麻豆文旦果實生長在不同土壤水分含量之下，對果實品質之影響，如土壤水分供給不足果實較小且果汁率較低，但果實採收前為較低之土壤水分，則有較高之果實糖度；如土壤水分供給適中，植株生長過於旺盛，雖可結較大的果實及較高的產量，但相對的果實水分則有乾燥及異味產生，且果實糖度低品質差。由此可知土壤含水量高低影響果實品質甚為明顯。

又張等 (7) 研究芒果在二種不同土壤含水量狀況下，各處理之間溫度之差異均在 1℃以下，對植株生長及開花結果，地溫並不是影響因子。則土壤水分影響麻豆文旦植株生育、產量及品質之主要因素。當麻豆文旦植株在 2～4 月的春梢生長期、花穗生長與開花期、著果等時期，土壤含水量保持在 15% （－30～－40 分巴）以上時，則有利於生長；而 5～7 月果實生長肥大期，土壤含水量保持在 15% （－30～－40 分巴），以利果實生長發育，但保持在 20% （－8～－12 分巴）高土壤含水量時，植株生長旺盛，果實品質反而降低，而 11 月～翌年 1 月及果實成熟期，土壤含水量保持在 10% （－50～－70 分巴），有利於植
株枝梢花芽分化，及果實成熟期糖度之提高。至於在不同生長時期調節不同土壤水分含量，對鳳豆文旦植株結果量及果實品質之影響，今後仍繼續探討之。

引用文獻

1. 台灣省農林廳．1999．台灣農業年報 88 年版 p. 107。
2. 林芳存．1994．鳳豆文旦果實生育變化與品質之研究。台灣大學園藝學研究所碩士論文。
3. 柯立祥、顏昌瑞、施昭彰．1996．鳳豆灌漑及自動化之應用，p. 1～6。柯立祥主編鳳豆自動
 灌漑技術手冊，國立屏東技術學院。
4. 莊南路．1954．鳳豆文旦．科學農業 2：23～26。
5. 陳清潭．1996．鳳豆文旦春梢生長與果實習性之探討。中國園藝 42(1)：78～88。
6. 陳清潭、張明聰、張明聰．1997．鳳豆文旦植株落葉習性之探討。台南區農業改良場研究彙報
 34：14～25。
7. 張明聰、張明聰．1995．土壤含水量對芒果生育、產量及品質之影響。台南區農業改良場研究
 彙報 32：45～55。
8. 邱阿賢．1987．乾旱對柑桔生長的影響一生長、營養狀況及 1-Aminocyclopropane-1-
 Carboxylic Acid 和 1-(Malonylamino) Cyclopropane- 1-Carboxylamino 含量的變化。國立台
 灣大學園藝學研究所碩士論文。
 65～76。果樹產期調節研討會專集。台灣省台中區農業改良場特刊第 1 號。
10. 颜昌瑞、柯立祥、施昭彰．1996．果樹生育與水分控制，p. 27～37。柯立祥主編果樹自動灌
 漿技術手冊，國立屏東技術學院。
 Press, Berkeley.
 chloroethyl-trimethylammoniumchloride (C C C) on flower differentiation in 'Eureka'
 (Citrus aurantifolia Swing) through stress management Progressive Hort. 20 (1-2) : 1～6.
Effect of Different Soil Water Content Treatments on the Growth, Yield and Quality of ‘Matou Wentan’ (*Citrus grandis* Osbeck) ¹

Chen, H. T., C. J. Lu and M. T. Chang²

Summary

A quantitative micro-irrigation system, simple protected structure and water tensiometers were used in this study to conduct the effect of different soil water content treatments on the growth and fruit quality of Matou Wentan (*Citrus grandis* Osbeck). Soil water content were kept at 20% (-8 to -12 centibars), 15% (-30 to -40 centibars) or 10% (-50 to -70 centibars) for the growth of 3-yr-old trees. It revealed that best flowering was observed in the treatment with 10% of soil water content followed by the 15% and 20%, the percentage of flowering shoots on each tree was 24.5%; 18.9%; and 9.5%, respectively. Fruit setting percentage in descending order were 25.7%; 13.4% and 7.1%, respectively, for the soil water content of 20%, 15% and 10%. The number of fruits/tree harvested from the soil with 20% and 15% of water content were better than that from 10%, they were 22.8, 21.8 and 9.0 fruits/tree, respectively. Analysis of fruit quality indicated that sugar content and juice percentage in the treatment with 10% of soil water content were 11.2 Brix and 34.1%, respectively, however, the fruits were smaller. In the treatment with 15% of soil water content, the fruits were resulted in 9.7 Brix sugar content, 43.3% juice, and larger fruits with off-flavor. The fruits treated with 20% soil water content were performed with 9.0 Brix sugar content, 38.2% juice, larger fruits with off-flavor and partially dehydrated in the vesicles.

Key words: Matou Wentan, soil water content, growth, yield, quality.

Accepted for publication: November 2, 1999.

¹ Contribution No. 256 from Tainan District Agricultural Improvement Station.
² Assistant researcher, assistant researcher and researcher, Hsinhua Branch Station of Tainan District Agricultural Improvement Station.