利用粉碎殼殼育苗之研究
Research on How to Raise the Seedlings on the Ground Rice Hull-bed.

梁連勝 陳萬福 黃杉蔚
L.S. Liang W.F. Chen. S.C. Huang

摘要 粉碎殼殼經篩除小粒碎米後，以 16～24目粉碎度者供育苗最經濟並可減緩酸酵速度。本育苗技術的種子預播工作與土壤育苗法相同，唯催芽程度以芽長 2 mm 最好。使用殼殼量為每箱 350～450 公克；為防止殖生，育苗時在播種前每箱噴酒 600cc 稀肥料溶液以代替清水（一期作每 100 公升水加硫酸銅 800～1400 公克，氯化鉀 400 公克；二期作為硫酸銅 250～500 公克，氯化鉀 200 公克，並充分拌勻。），播種後每箱再噴 400cc 清水（或立枯靈溶液）。以本法育苗時需注意堆積、蠶化時因殼殼酸酵所產生之高溫及苗床水溫不正常之升高，以抑制發芽及秧苗根群發育。育苗時因殼殼浸漬在水中，極不利好氣性水稈病害孢子之生存，無殼殼帶菌傳染之虞；但必需使用無菌已消毒之殼殼。

以本法育苗其床材成本比土壌育苗法每箱兩期平均可節省 0.7 元；全省目前水稻機械移植用秧苗若改用本法育苗時，則在育苗材料上，全年可節省新台幣 3538 萬元。

前 言

本省水稻栽培面積年逾 7.8 萬公頃，近年來由於稻種播種之積極推行，目前約有 27% 的水稻田由稀秈機播種。而各播種機所需秧苗，除部份自行培育外，均由各地育苗中心供應。向來育苗時均以土壤作育苗床，但此作法之採集，為育成優良秧苗，需視土壤質地、pH 值、含腐質含量、密度及氣候環境等因素限制。採集至不易。而土壤是育苗必備之材料，如以每處育苗中心每期作供秧 24,000 箱（100公頃），每箱用床土 5 公斤計算，則需床土 120 公頃。全省現有育苗中心 400 處，每年兩期作共需床土 96,000 公頃，為數相當可觀；復因機械播種的全面普及，育苗中心之增設，育苗用床土之需求更迫切。長此以往，將發生育苗用床土供應來源短缺，影響機械播種之進行及提高育苗成本。因此，若不及早設法以資源豐富之材料取代土壤，則後果堪虞。何況本省年產水稻 300 萬公頃，經加工碾製後，所得副產物穀殼，年有 40～50 萬公頃，該副產物現形同廢物，且處理困難；雖然范德歐氏曾以甲化稻殼作園藝作物育苗之用，但穀殼酸化成本較高，本場有研究之，乃以穀殼及土壤為育苗床材代穀殼比較試驗；結果顯示，經粉碎後之穀殼，所育成之秧苗，發育良好，乃著手進行有關育苗技術之探討與建立相關的實用育苗方法。

材料與方法

一、材料：

1. 穀殼（已粉碎及未粉碎）、床土及水稻種子。
2. 育苗箱（木箱及塑膠箱）、育苗設備。
3. 化學肥料。
4. 秧苗徒長病病原菌。

二、方法：

— 22 —
結果與討論

一未粉碎穀殼，粉碎穀殼及土壤育苗比較試驗

每箱播種萌芽種子250公克，裝箱後澆水1500cc，其結果如表1。

表一 不同床材育苗成果比較

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Mean height of seedlings (12 days after seedinf)</th>
<th>Growth of seedling root</th>
</tr>
</thead>
<tbody>
<tr>
<td>01: Each case use 300 gr ground rice hull & no fertilizer.</td>
<td>14.20</td>
<td>Excellent</td>
</tr>
<tr>
<td>02: Each case use 300 gr ground rice hull & N:P:K=5:5:3 gr.</td>
<td>17.82</td>
<td>Excellent</td>
</tr>
<tr>
<td>03: Each case use 400gr ground rice hull & no fertilizer.</td>
<td>14.18</td>
<td>Excellent</td>
</tr>
<tr>
<td>04: Each case use 400gr ground rice hull & N:P:K=5:5:3 gr.</td>
<td>17.21</td>
<td>Excellent</td>
</tr>
<tr>
<td>05: Each case use 500gr ground rice hull & no fertilizer.</td>
<td>14.76</td>
<td>Good</td>
</tr>
<tr>
<td>06: Each case use 500gr ground rice hull & N:P:K=5:5:3 gr.</td>
<td>18.69</td>
<td>Good</td>
</tr>
<tr>
<td>07: Each case use 300gr un-ground rice hull & no fertilizer.</td>
<td>10.40</td>
<td>Bad</td>
</tr>
<tr>
<td>08: Each case use 300gr un-ground rice hull & N:P:K=5:5:3 gr.</td>
<td>10.98</td>
<td>Bad</td>
</tr>
<tr>
<td>09: Each case use 4500 gr soil & no fertilizer.</td>
<td>9.84</td>
<td>Fair</td>
</tr>
<tr>
<td>10: Each case use 4500 gr soil & N:P:K=5:5:3 gr.</td>
<td>15.45</td>
<td>Good</td>
</tr>
</tbody>
</table>
本试验结果，以300～400公克粉碎穀穀为床材料育之秧苗其根部发育良好，施者者比不施肥之秧苗，其平均株高度3公分。未粉碎穀穀因粒径大，保水力差，秧苗根系生长不良，捲起後散開，無法供插秧機使用，不適合作插秧機用育苗材料。粉碎穀穀使用量以每箱装350～450公克为宜，300公克稍嫌薄，500公克则太厚，堆積時下層苗箱之種子沿附在上層箱底，且太厚之床材，育成苗後插秧機無法使用。播種時每箱鋪1500cc水，量太多，如疏忽；在堆積時若箱底尚有滴水，將因上層餘水滴入下層苗箱，形成惡性連鎖效應，抑制根部部位種子萌芽；為減緩穀穀温度速率及温度之升高，應減少滴水量及除去穀穀中碎米粒。穀穀與肥料比重相差大，顆粒粗細不同，大量混合時不易均勻且易生沈澱，應另改施肥法。種子播種後應以600公克土壤覆蓋，絕對不可用碎穀穀覆蓋。育成苗後，在放入插秧機使用前應將苗塊放入水田泥漿中，使其吸足泥水，使每塊重量增至5公斤（瀝乾水分，每塊重1.5公斤），以利插植，減少缺株發生。

一、二期作粉碎穀穀施施肥育苗试验

每箱使用400公克粉碎穀穀为床材，进行各种施肥量比较及分别以混肥与无肥土壤覆盖。所施肥料为硫酸铵及氯化钾之稀溶液，其结果如表二

表二 不同施肥量之育苗成果

Table 2. The raising results on different fertilizer supply. (each case use 400 g of ground rice hull. & 600cc. dilute fertilizer solution)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Sprouting & Growth of root system.</th>
<th>Mean height of seedlings (12 days after seeding)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First crop</td>
<td>Second crop</td>
</tr>
<tr>
<td></td>
<td>Cover with pure soil</td>
<td>Cover with soil mixture</td>
</tr>
<tr>
<td>01: 0.25% Ammonium-Sulphate & 0.1% Potassium</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>02: 0.5% Ammonium-Sulphate & 0.2% Potassium.</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>03: 0.75% Ammonium-Sulphate & 0.3% Potassium.</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>04: 1.0% Ammonium-Sulphate & 0.4% Potassium.</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>05: 1.25% Ammonium-Sulphate & 0.5% Potassium.</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>06: 1.5% Ammonium-Sulphate & 0.6% Potassium.</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>07: 1.75% Ammonium-Sulphate & 0.7% Potassium.</td>
<td>E</td>
<td>B</td>
</tr>
</tbody>
</table>

Soil mixture: 4500 gr soil mix with N:P:K = 8:8:4 gr for 1st crop.
4500 gr soil mix with N:P:K = 5:5:3 gr for 2nd crop.
E: excellent G: good F: fair B: bad
在本試驗中，苗床在播種前澆水改以每箱用 600CC 稀肥料溶液代替，播種後追噴 400CC 清水；覆蓋
種子用土壌混肥與否，對秧苗生育影響不大，同時亦不因混肥而生抑制發芽之作用。肥料溶液濃度在一
期作以 0.25 ～ 1% 之硫酸銅及 0.1 ～ 0.2% 之氫化銅，所育成之秧苗生育及根群生育最好。

表三 接種對長病後育苗病發情形

<table>
<thead>
<tr>
<th>Treatments</th>
<th>The no. of the Bakanae seedlings per case.</th>
<th>Total</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>01: Both of hull and seed have inoculation, and the seed has sterilization after inoculation.</td>
<td>4</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>02: Both of hull and seed have inoculation, and the seed is without sterilization.</td>
<td>152</td>
<td>75</td>
<td>157</td>
</tr>
<tr>
<td>03: The hull has inoculation and the seed has sterilization only.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>04: The hull has inoculation and the seed is without treatment.</td>
<td>18</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>05: The hull is without treatments and the seed has sterilization after inoculation.</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>06: The hull is without treatment and the seed has inoculation only.</td>
<td>119</td>
<td>83</td>
<td>135</td>
</tr>
<tr>
<td>07: The hull is without treatment and the seed has sterilization only.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08: Both of hull and seed are without treatment.</td>
<td>21</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>09: The soil bed use the seed has inoculation and sterilization.</td>
<td>186</td>
<td>23</td>
<td>118</td>
</tr>
<tr>
<td>10: The soil bed use the seed has sterilization only.</td>
<td>13</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

L.S.D. 5%：54.69 1%：75.0

根據本試驗分析結果，無論穀殼是否帶菌，如所用種子為未帶菌且經完全消毒者，其徒長病發生
數為 0；帶菌未消毒之種子使用帶菌穀殼苗床，徒長病發生數平均為 128；帶菌有消毒之種子，使用土
壤苗床，徒長病發生數平均為 109；其 L.S.D 值 5% 为 54.69，1% 为 75.0，故其差異呈極顯著

換言之：以穀殼育苗，為防止病害傳染與發生，應使用健康無菌且完全消毒之種子。

不同育苗床材之材料成本分析

本分析僅就不同床材使用成本計算，其余育苗資材相同者未列入，致於因使用材料別所發生之勞力
表四 不同育苗床材成本分析

<table>
<thead>
<tr>
<th>Cost items</th>
<th>Ground rice hull bed</th>
<th>Soil bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of bed material</td>
<td>0.32</td>
<td>0.45</td>
</tr>
<tr>
<td>The wage for grind the bed material and mix fertilizer.</td>
<td>—</td>
<td>0.27</td>
</tr>
<tr>
<td>Cost of grinding machine and fuel or power supply.</td>
<td>—</td>
<td>0.08</td>
</tr>
<tr>
<td>Cost of soil for covering.</td>
<td>0.10</td>
<td>It covers in the item(1)</td>
</tr>
<tr>
<td>Cost of fertilizer.</td>
<td>0.02 0.10 0.08 0.05</td>
<td>1st crop 2nd crop 1st crop 2nd crop</td>
</tr>
<tr>
<td>Cost for seedling Fusarium wilt control medicine.</td>
<td>—</td>
<td>0.50</td>
</tr>
<tr>
<td>Total</td>
<td>0.44 0.43 1.38 0.85</td>
<td></td>
</tr>
</tbody>
</table>

** The price of the ground rice hull is NT$ 0.8/Kg.**

由於使用不同育苗床材，使育苗成本發生很大差異，上表構成材料部份所造成在育苗資材上的成本差加以分析，而對作業時間及效率的增加未計算在內，計兩期平均結果，穀穀育苗法較土壤育苗法每箱可節省育苗成本新台幣0.7元。

粉碎穀穀育苗技術：
1. 種子處理：與一般土壤育苗法相同，種子必需徹底消毒。
2. 催芽：經種子預切處理後之稻種，予以催芽，使其芽長達2%時即為最適宜播種之期。
3. 準備粉碎穀穀與裝箱：使用16～24目粉碎度，經篩除草仔，碎米之碎穀殼，以機械或人工均勻裝箱；每箱裝350～450公克，約厚1.2～1.5公分。
4. 播種前每箱600cc經充分攪拌之稀肥料溶液（一期作每100公升加硫酸鎂800～1400公克，氯化銨400公克；二期作為硫酸鎂250～500公克，氯化銨100～200公克；並依實際需要而酌予增減）。
5. 先播種優先肥料溶液後，可不必等肥料水被吸收即可進行播種，每箱均勻播下萌芽種子250～280公克，播種後再在種子上噴400cc清水（必要時改用1000倍立枯靈稀釋液），使種子潮濕有助萌芽。
6. 覆土：播種後每箱以600公克細土壤均勻覆土種子（一期作可用沙代替土壤，但二期作切勿使用河沙覆蓋，同時不論期作別，也勿用碎穀殼覆蓋）。7. 堆積、覆蓋保溫及遮蔽。

一期作育苗時以每層堆積20～25箱為度，每疊之間預留適於作業之間隙，並以覆蓋塑膠布方式保溫，堆積時間以二晝夜為度，並以萌芽及温度變化而更之，室外氣溫高時，一晝夜即可移出綠化。

二期作堆積時，每層間預留10公分間隙，以利通風，並以每層20箱為限，堆積時應適蓋或置於陰涼處，堆積時以一晝夜為限。

一、二期作堆積時，最上層應置一箱內裝滿土壤之苗箱，藉防水分蒸散及保溫，以使最上面苗箱之
萌芽情形與下層一致。

8 綠化：

一期作育苗時，在堆積後移出於秧畦上，以二箱及對放，每間隔三箱架—8 號碳桿或竹片，上覆塑膠布，並置一溫度計，當棚內溫度升高至 30℃時，將二端塑膠布掀開，以利排熱氣與通風，溫度高至 35℃時，應將全部塑膠布掀開，以防高溫灼傷種子，俟溫度降低後再覆蓋之。為促進秧苗發育，提早播秧，可不必掀開塑膠布，以循環灌排水方式調節溫度，至播秧前 3 天除去覆蓋。

二期作育苗時，在秧苗移放於秧畦之際，亦以二箱對放，每間隔三箱架—8 號碳桿或竹片，上覆綠色紗網以防日晒及陰雨沖刷；綠化初期如遇陰雨，應加蓋塑膠布。此外，尚可用稻草覆蓋遮蔽方式進行育苗綠化作業，稻稈可覆蓋至播秧前 3 天除去，以促進生長，提早播秧。本期作綠化期間，如遇異常高溫，可用循環灌排水方式調節苗床溫度。

9 灌水：

粉碎穀殼吸水力極強，當綠化初期—秧苗根部伸長期（3 天內），每天灌水量以達苗箱高 0.5～1.5 倍為限，以防過溼導致淹傷，種子裸露被日光灼傷或歪斜。四天後，秧苗根部已旺盛，苗株已能直立，應每天灌水至苗箱全高度，（午後天氣轉涼流灌水）翌日清晨再排水。粉碎穀殼發酵水，因醱酵做基床溫度異常升高時，可用循環灌排水法調節之；同時由醱酵使秧苗積水濃度異常升高，影響根部發育，亦應特別注意，以清水稀釋後排水。以粉碎穀殼育苗，溫度與水分直接影響秧苗生長，應保持充分之水分供應（每日灌水）；粉碎穀殼排水快，播秧前一日停止灌水即可供插植並可減輕運運時重量。

10. 病虫害管理：

以粉碎穀殼育苗時最擔心穀殼帶菌傳染，但穀殼主要病害中，稻熱病、徒長病及立枯病等孢子均屬好氣性，而穀殼在育苗期中均浸漬在水中，極不利上述病害孢子之生存，故只要採用健康無菌，且經過完全消毒之種子，即可防止上述病害發生。至於其他病害，應視發生情形選用殺蟲藥劑防治之。

以本法育苗除因浸水不利前述病害生存外；一期作因醱酵使秧苗積水溫度均高至 20℃，立枯病不易發生，可酌酌免用立枯靈稀釋液。

11. 其他管理：

若秧苗生育緩慢，為促進生長，提早插植，可在秧苗本葉 2 條時，噴施氮肥尿素液，以每箱秧苗均 10 公升水加尿素 0.5 公斤。

12. 粉碎穀殼育苗特性：

(1) 粉碎穀殼育苗通氣及吸排水良好，秧苗根部發育極強，故苗之耐旱期比土壤苗長，一期作通常可延 35 天，最長 60 天，二期作通常可延 25 天，最長 35 天，其根部及苗株尚未老、黃化，仍可以機械插植。

(2) 粉碎穀殼可塑性小，秧苗成塊狀由根部紡紗而成，故苗塊含高水分或雨中，不致發生斷裂堆積之現象，適合雨中插植（高水分）。

(3) 重量輕，運運及育苗作業輕便，工作效率高；插植前，先將苗塊放在田中，使吸足泥漿（重達5公斤），以防缺株。

(4) 粉碎穀殼因醱酵生火熟，在一期作有保溫及促進秧苗生長之功效；嚴寒有霜時可防霜害。

(5) 來源豐富，成本低，使用成本比土壤每箱節省 0.7 元。

結論

粉碎穀殼可取代土壤育苗，鮮、陳穀殼均可用；以本法育苗應特別注意不可以土壤育苗法管理之。
同時可視需要分別採用純稻穀或混土育苗。唯覆蓋材料不可用穀殼，需用土壤或河沙（限一期作用），育成後插植前，應先把苗塊放在本田泥漿中吸足泥水，增加重量，以防插植時發生缺株。

参考文献

1. 范念慈 民國64年 胺化稈殼對園藝作物育苗之效應 與大園藝 No.1 P 6～10
2. 范念慈 民國66年 胺化稻殼敷蓋對木瓜生育上效果 與大園藝 No.2 P 25～27
3. 孫守恭 Fusarium 屬病原菌在土壤中之生態 植物保護學會會刊第17卷第2期 P 216～232
4. 鄭其昌 民國40年 菌的病害 病虫害防治人員訓練班講義（農林廳） P 185～194
5. 盧守耕 民國54年 稻作學
6. 小野小三郎 1959年 水稻病害之診斷與防治 養賢堂
7. 逸成武雄 1949年 稻熱病之研究 朝倉書店
8. 黃方未彦 1949年 食用作物病學 朝倉書店 P 63～69

Summary

As a result of promoting the rice cultivation mechanizing, the rice transplanter becomes a very useful machine for planting in Taiwan. Over all the operations of planting, the first thing we must consider is to prepare the seedlings. The seedling is usually nursed by soil bed. Before prepare the seed bed, it must collect the bed soil in advance. The collecting of soil is always restrained by the soil quality, organic matter contain, PH value and the enviromental conditions. If using soil bed for nursing, there is one thing more bothering the farmers is the Fusarium wilt of seedlings. The soil consuming amounts to 168,000 tons per year under the 27% mechanizing of planting in Taiwan now. As the planting operation mechanizing step by step, the bed soil supply and consuming will be the greatest trouble for our farmers. For this we should find a new bed material, cheap and plentiful, which can substitute the soil. So we have made searching for how to use the rice hull to nurse the seedlings. As a result of this study we find the ground rice hull is the best material for nursing.

The technique of raising seedling by ground rice hull bed has been established by experiments. Before planting; the seed processing procedure is the same as traditional, each case must be uniformly spread on 400 gr ground hull then spraying 600 cc dilute solution of fertilizer (use 0.75% Ammonium-Sulphate and 0.3% Potassium for 1st crop; 0.4% Ammonium-Sulphate and 0.15% Potassium for 2nd crop.). After seeding, it must spray 400cc water/Fusarium wilt control medicine dilute solution for promoting the spoute of seed; at last cover the seed uniformly by 600 gr soil. During the pile and harden time, it is important to take care of the unreasonable temperture rise which induced by the fermentation of hulls that will cause the inhibition of sprouting.

According to the statistical analysis on the results of searching for
Bakanae control, it indicates that, in spite of the Bakanae is inoculated to the hull or not, the hull bed will't cause the Bakanae occure on the seedling unless the seed is inoculated with germs and without perfect sterilization. During the raising time the hull is soaked in water, it is the worst enviroment for the rice diseases such as Bakanae, rice blast, Fusarium wilt etc. The above diseases will't easy to occure. In other words, the rice hull bed will't cause the rice diseases. In conclusion, the hull bed seedlings is as strong as the traditional, it will't influence the yield. We can get the rice hull re-use and save the nursery cost about 35.38 millions.

一貫作業育苗機作業情形
The operation of the once-over nursery implement.

A: Seedlings on the ground rice hull bed.
B: The sprouting of the seed on hull bed.
C: The ground rice hull seed bed about a layer of 1.2 ~ 1.5 cm thickness.
第一期作圖聚製育苗
Protect from cold climate by PE cloth during the 1st crop raising time.

第二期作尼龍網遮鐵育苗
Shield by nylon net during the 2nd crop raising time.
秧苗及根群生育

The growth of the seedling on ground rice hull bed and it's root system.